- Sato, M., Tanaka, S. & Kaeriyama, K. (1986). J. Chem. Soc. Chem. Commun. pp. 873-874.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1995). C51, 1397-1399

Dimethyl 4-*exo*,9-*endo*-Dibromobicyclo-[3.3.1]non-2-ene-2,3-dicarboxylate

KYOSUKE SATAKE, HAJIME ITOH, MASARU KIMURA, SHIRO MOROSAWA AND SETSUO KASHINO

Department of Chemistry, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama 700, Japan

(Received 8 August 1994; accepted 25 January 1995)

Abstract

The bromination reaction of dimethyl bicyclo[3.2.2]nona-6,8-diene-6,7-dicarboxylate, (1*b*), gave the title compound (2*b*), $C_{13}H_{16}Br_2O_4$, and dimethyl 4-*exo*,9*exo*-dibromobicyclo[3.3.1]non-2-ene-2,3-dicarboxylate, (3*b*). The saturated six-membered ring of (2*b*) adopts a chair conformation with the Br atom in an equatorial position.

Comment

The electrophilic bromination reaction of norbornadiene, which gave the skeleton-rearranged dibromide, is of interest in connection with the intramolecular mutual interaction of the two double bonds (Winstein & Shatavsky, 1956; Schmerling, Luvisi & Welch, 1956). On the other hand, in the case of the norbornadiene homologues, bicyclodienes (1a) and (4), 1,5- and 1,2-addition, under similar conditions, of the bromine to the common cyclohexa-1,4-diene part in the molecule occurred to give dibromides without any skeletonrearrangement products (Fickes & Metzs, 1978; Gagneux & Grob, 1959; Grob & Hostynek, 1963). Regarding the synthetic work for the norbornadiene homologues bicyclo[4.2.2]deca-7,9-diene and bicyclo[5.2.2]undeca-8,10-diene (Satake, Usumoto, Hikasa, Kimura, Kishima & Morosawa, 1992), a reinvestigation of the bromination reaction of the bicyclodiene (1a) and its dimethoxycarbonyl derivative (1b) was undertaken in order to investigate a systematic change in features of the mutual intramolecular interactions of the 1.4cyclohexadiene part of the structure.

When equimolar bromine was added to a dichloromethane solution of bicyclodiene (1*a*) or (1*b*) at 273 K, a hitherto unknown skeletal rearrangement occurred in both cases to give mixtures of dibromides presumably *via* an *exo*-bromonium ion of the starting bicyclodiene. The mixtures were chromatographed independently on silica gel and gave 9-*endo*- and 9-*exo*-dibromides (2*a*) and (3*a*), and (2*b*) and (3*b*), respectively. On the basis of ¹H and ¹³C NMR spectra, these dibromides were shown to have the same carbon skeleton. We report here the structure of (2*b*) (Fig. 1).

The structure reported here is the first example of an X-ray structural analysis of the bicyclo[3.3.1]non-2-ene system. The features of the bicyclic ring are summarized as a chair-form cyclohexane ring [C(1)-C(9)-C(5)-C(6)-C(7)-C(8)] and a bending cyclohexene ring [C(1)-C(2)-C(3)-C(4)-C(5)-C(9)] whose five C

Fig. 1. ORTEPII diagram (Johnson, 1976) of the title compound with displacement ellipsoids of 50% probability drawn for non-H atoms. H atoms are represented as spheres equivalent to $B = 1.0 \text{ Å}^2$.

Acta Crystallographica Section C ISSN 0108-2701 ©1995 C(13)

atoms, C(1)-C(5), are arranged in a coplanar config-O(3) uration [C(1)-C(2)-C(3)-C(4) - 2(1)] and C(2)-C(4)O(4) C(1) C(3)—C(4)—C(5) 5 (1)°]. The dihedral angle between C(2) the plane defined by C(1), C(9) and C(1), and that C(3) C(4) through C(2), C(3), C(4) and C(5) is $127.1(9)^{\circ}$, while C(5) the corresponding angle for unsubstituted bicyclo[3.3.1]-C(6) C(7) non-2-ene is estimated to be 123° by MM2 calculations C(8) (Allinger, 1977). A larger dihedral angle for compound C(9) (2b) is attributable to the intramolecular steric repulsion C(10) C(11) between Br atoms $[Br(1) \cdots Br(2) 3.677(1) \text{ Å}]$. C(12)

Experimental

Crystals of (2b) were grown by slow evaporation from dichloromethane solution.

Crystal data

 $C_{13}H_{16}Br_2O_4$ Mo $K\alpha$ radiation $M_r = 396.1$ $\lambda = 0.71073 \text{ Å}$ Orthorhombic Cell parameters from 25 Pbca reflections a = 13.945(9) Å $\theta = 10 - 11^{\circ}$ b = 15.406 (8) Å $\mu = 5.41 \text{ mm}^{-1}$ c = 13.830(8) Å T = 295 KV = 2971 (3) Å³ Prismatic Z = 8 $0.38 \times 0.30 \times 0.25$ mm $D_x = 1.771 \text{ Mg m}^{-3}$ Colourless

Data collection

Rigaku AFC-5R diffractom-	$R_{\rm int} = 0.031$
eter	$\theta_{\rm max} = 25.0^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 16$
Absorption correction:	$k = 0 \rightarrow 18$
ψ scan	$l = -1 \rightarrow 16$
$T_{\rm min} = 0.85, \ T_{\rm max} = 1.00$	3 standard reflections
2942 measured reflections	monitored every 97
2641 independent reflections	reflections
1141 observed reflections	intensity decay: 2.7
$[l > 3\sigma(l)]$	j =====j =====j =;

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.047	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.030	Extinction correction:
S = 1.53	$I_{\rm corr} = I_o(1 + gI_c)$
1141 reflections	Extinction coefficient:
237 parameters	2.12×10^{-5}
All H-atom parameters	Atomic scattering factors
refined isotropically	from International Tables
$w = 1/\sigma^2(F)$	for X-ray Crystallography
$(\Delta/\sigma)_{\rm max} = 0.63$	(1974, Vol. IV)

intensity decay: 2.7%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

 $B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*a_j.a_i.$

	x	у	Ζ	Ben
Br(1)	0.48704 (7)	0.01680 (8)	0.13032 (7)	7.72 (7)
Br(2)	0.40333 (6)	-0.20945(8)	0.13611 (8)	8.58 (7)
O(1)	0.2800 (4)	-0.1960 (4)	0.4276 (4)	4.9 (4)
O(2)	0.3361 (4)	-0.0718 (4)	0.4902 (4)	4.6 (3)

0.4396 (4)	0.0938 (4)	0.3633 (5)	6.2 (4)
0.3005 (4)	0.0296 (4)	0.3226 (4)	4.0 (3
0.4677 (7)	-0.2132 (6)	0.3334 (8)	4.2 (6
0.4168 (5)	-0.1290 (6)	0.3556 (6)	2.6 (4
0.4409 (5)	-0.0538 (6)	0.3161 (6)	2.5 (4)
0.5253 (6)	-0.0478 (6)	0.2478 (6)	3.7 (5)
0.5745 (6)	-0.1327 (7)	0.2221 (6)	3.7 (6)
0.6603 (7)	-0.1502 (8)	0.2892 (7)	4.0 (6)
0.6299 (8)	-0.1608 (7)	0.3932 (7)	4.2 (6)
0.5523 (8)	-0.2298 (8)	0.4031 (9)	5.2 (7)
0.5085 (7)	-0.2100(7)	0.2307 (7)	5.2 (6)
0.3347 (6)	-0.1374 (6)	0.4279 (6)	2.9 (5)
0.254(1)	-0.071(1)	0.558 (1)	8(1)
0.3945 (7)	0.0321 (6)	0.3372 (6)	3.2 (5)
0.251(1)	0.111 (1)	0.348 (2)	7(1)
		• •	\-/

Table 2. Selected geometric parameters (Å, °)

	8 · · · · · · · · · · · · · · · · · · ·			,	
•	Br(1)C(4)	1.979 (8)	C(1)C(9)	1.53 (1)	
a	Br(2)—C(9)	1.965 (9)	C(2)-C(3)	1.325 (9)	
	O(1)-C(10)	1.183 (8)	C(2)-C(10)	1.52 (1)	
	O(2)C(10)	1.328 (9)	C(3)-C(4)	1.51 (1)	
	O(2)-C(11)	1.48 (1)	C(3)-C(12)	1.50 (1)	
	O(3)-C(12)	1.196 (9)	C(4)—C(5)	1.52 (1)	
	O(4)C(12)	1.327 (9)	C(5)—C(6)	1.54 (1)	
	O(4)C(13)	1.48 (1)	C(5)—C(9)	1.51 (1)	
	C(1)C(2)	1.51 (1)	C(6)C(7)	1.51 (1)	
	C(1)C(8)	1.54 (1)	C(7)—C(8)	1.52 (1)	
	C(10)O(2)C(11)	114 (1)	C(4)C(5)C(9)	112.6 (8)	
	C(12)-O(4)-C(13)	113.8 (8)	C(6)-C(5)-C(9)	106.8 (8)	
	C(2)-C(1)-C(8)	111.9 (9)	C(5)-C(6)-C(7)	112.1 (8)	
	C(2)C(1)C(9)	109.6 (9)	C(6)-C(7)-C(8)	111.2 (9)	
	C(8)C(1)C(9)	107.5 (8)	C(1)-C(8)-C(7)	111.8 (9)	
	C(1) - C(2) - C(3)	123.3 (8)	Br(2)-C(9)-C(1)	109.9 (7)	
	C(1) - C(2) - C(10)	114.8 (8)	Br(2)-C(9)-C(5)	113.6 (7)	
	C(3)-C(2)-C(10)	122.3 (8)	C(1)-C(9)-C(5)	109.0 (8)	
	C(2)C(3)C(4)	120.5 (8)	O(1)-C(10)-O(2)	126.3 (9)	
	C(2) - C(3) - C(12)	125.6 (7)	O(1)-C(10)-C(2)	123.2 (9)	
	C(4) - C(3) - C(12)	113.8 (8)	O(2)-C(10)-C(2)	110.5 (8)	
	Br(1) - C(4) - C(3)	109.5 (6)	O(3)-C(12)-O(4)	126.1 (9)	
	Br(1) - C(4) - C(5)	111.3 (6)	O(3)-C(12)-C(3)	122.2 (9)	
	C(3) - C(4) - C(5)	116.5 (5)	O(4)-C(12)-C(3)	111.7 (8)	
	C(4) - C(5) - C(6)	111.2 (8)			
	C(1)-C(2)-C(3)-C(4)	-2(1)	C(7) - C(8) - C(1) - C(9)	57 (1)	
	C(1) - C(9) - C(5) - C(4)	-56(1)	Br(1) - C(4) - C(3) - C(2)	131.8 (7)	
	C(2) - C(1) - C(9) - C(5)	57 (1)	C(3)-C(4)-C(5)-C(9)	26 (1)	
	C(2) - C(3) - C(4) - C(5)	5 (1)	C(1)-C(8)-C(7)-C(6)	-52(1)	
	C(3) - C(2) - C(1) - C(9)	-29(1)	C(1)-C(9)-C(5)-C(6)	66 (1)	
	C(5)-C(6)-C(7)-C(8)	54 (1)	Br(2)-C(9)-C(5)-C(4)	66.4 (9)	
	C(5) - C(9) - C(1) - C(8)	-65 (1)	C(4)-C(3)-C(2)-C(10)	177.5 (7)	
	C(7) - C(6) - C(5) - C(9)	-60(1)	C(1)-C(2)-C(3)-C(12)	-178.4(8)	

Data collection and cell refinement were carried out with MSC/AFC Data Collection and Refinement Software (Rigaku Corporation, 1990). The structure was solved by direct methods using MITHRIL (Gilmore, 1984) and refined by full-matrix least squares using TEXSAN (Molecular Structure Corporation, 1985). The displacement ellipsoids were drawn with the aid of ORTEPII (Johnson, 1976). The calculations were performed on a VAX 3100 computer using TEXSAN at the X-ray Laboratory of Okayama University.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: AS1147). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134. Fickes, G. N. & Metzs, T. E. (1978). J. Org. Chem. 43, 4057-4061. Gagneux, A. & Grob, C. A. (1959). Helv. Chim. Acta, 42, 1753-1764. Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.

- Grob, C. A. & Hostynek, J. (1963). Helv. Chim. Acta, 46, 1676-1686. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge
- National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Rigaku Corporation (1990). MSC/AFC Data Collection and Refinement Software. Rigaku Corporation, Tokyo, Japan.
- Satake, K., Usumoto, K., Hikasa, K., Kimura, M., Kishima, N. & Morosawa, S. (1992). Chem. Express, 7, 661-664.
- Schmerling, L., Luvisi, J. P. & Welch, J. P. (1956). J. Am. Chem. Soc. 78, 2819–2821.

Winstein, S. & Shatavsky, M. (1956). Chem. Ind. pp. 56-57.

Acta Cryst. (1995). C51, 1399-1401

1,2-Dicyanobenzene. A Precursor of Phthalocyanines

JAN JANCZAK* AND RYSZARD KUBIAK

W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PO Box 937, 50-950 Wrocław, Poland

(Received 18 November 1994; accepted 27 January 1995)

Abstract

The molecule of 1,2-dicyanobenzene, $C_8H_4N_2$, possesses mirror symmetry. The two cyano groups are bent slightly above the plane of the molecule. The six aromatic C—C bonds in the benzene ring have a mean value of 1.377 Å. The C—CN and C=N bond lengths are 1.430 (7) and 1.149 (8) Å, respectively. The internal angles in the benzene ring differ slightly from 120°. The shortest intermolecular contact is N(1)····H(2) of 2.657 (16) Å.

Comment

We have used 1,2-dicyanobenzene as a precursor in the synthesis of phthalocyanines. Using a previously described preparation method (Kubiak & Janczak, 1993), we obtained several metallophthalocyanines (Janczak & Kubiak, 1993*a*,*b*, 1994*a*) and a new group of compounds, the bicyclic phthalocyanines (Janczak & Kubiak, 1994*b*).

Of the three isomers of dicyanobenzene, only the crystal structure of the 1,4-isomer has been published (Van Rij & Britton, 1977; Drück & Littke, 1978; Colapietro, Domenicano, Portalone, Schultz & Hargittai, 1984). This paper reports the crystal structure of the 1,2-isomer, (I).

The molecular geometry with the atomic numbering is shown in Fig. 1. The crystals are composed of isolated molecules of 1,2-dicyanobenzene. The two cyano groups are slightly bent above the benzene plane retaining molecular symmetry m. This plane is perpendicular to the benzene ring and bisects the C(1)— $C(1^{i})$ and C(3)— $C(3^{i})$ bonds [symmetry code: (i) -x, y, z]. The mean aromatic C-C bond length of 1.377 Å is comparable to analogous mean distances found in the 1,4-isomer (1.388 Å; Drück & Littke, 1978) and in 1,2,4,5-tetracyanobenzene [1.401 (8) Å; Prout & Tickle, 1978]. The C=N bond length of 1.149 (8) Å is typical of cyano groups and comparable to C-N distances found in various cyano derivatives (Britton, 1981a,b; Casado, Nygaard & Sorensen, 1971; Colapietro, Domenicano, Marciante & Portalone, 1981). The C-CN distance of 1.430(7) Å is comparable to C-CN distances of 1.451 (13) Å in the 1,4-isomer (Drück & Littke, 1978), 1.446 (8) Å in 1,2,4,5-tetracyanobenzene (Prout & Tickle, 1978) and 1.439(6) Å in 4-cyanopyridine (Laing, Sparrow & Sommerville, 1971). This bond length is intermediate between the expected value of 1.419 Å for sp-sp² C-C bond lengths and the value of 1.459 Å for sp-sp³ C-C bond lengths (Stoecheff, 1962).

Fig. 1. View of the molecular structure of 1,2-dicyanobenzene with the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

The mutual arrangement of the 1,2-dicyanobenzene molecules is illustrated in Fig. 2. The structure is composed of linear stacks of parallel and overlapping molecules forming a quasi-herringbone bond array. The distance between two successive parallel benzene rings is 3.503 (14) Å. This value is a little larger than the